
Complex curve of the two-matrix model and its tau-function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 3107

(http://iopscience.iop.org/0305-4470/36/12/315)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 3107–3136 PII: S0305-4470(03)56742-7

Complex curve of the two-matrix model and its
tau-function

Vladimir A Kazakov1 and Andrei Marshakov1,2,3
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Abstract
We study the Hermitian and normal two-matrix models in planar approximation
for an arbitrary number of eigenvalue supports. Its planar graph interpretation
is given. The study reveals a general structure of the underlying analytic
complex curve, different from the hyperelliptic curve of the one-matrix model.
The matrix model quantities are expressed through the periods of meromorphic
generating differential on this curve and the partition function of the multiple
support solution, as a function of filling numbers and coefficients of the matrix
potential, is shown to be a quasiclassical tau-function. The relation to N = 1
supersymmetric Yang–Mills theories is discussed. A general class of solvable
multi-matrix models with tree-like interactions is considered.

PACS numbers: 02.10.Yn, 02.30.Ik, 05.50.+q, 11.15.−q, 11.30.Pb

1. Introduction

Among the vast scope of matrix ensembles a distinguished role together with the integrals
over a single matrix is played by two-matrix models—the ensemble of two matrices, usually
with the simplest possible interaction between them [1]. Being still simple integrable systems
(as in the one-matrix case their partition function is a tau-function of Toda lattice hierarchy
[2]), these models already possess a richer mathematical structure than one-matrix models and
thus give rise to more applications. The two-matrix model was proposed and studied in [3] as
an important solvable example of a new class of statistical–mechanical systems: spins with

4 Unité mixte de Recherche 8549 du Centre National de la Recherche Scientifique et de l’Ecole Normale Supérieure
et à l’Université de Paris-Sud.
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nearest-neighbour interaction on planar graphs (Ising spins in this case). Its multi-critical
generalization, in the spirit of one-matrix multi-critical points [4], leads to a complete picture
of (p, q)-critical points in two-dimensional gravity [5, 6]5. It also appears in the context of
two-dimensional Laplacian growth [8–10] demonstrating some hidden parallels between all
these problems.

Matrix models were the first physical example when the partition functions were directly
related to tau-functions of integrable systems [2]. The relation between the (quantum) partition
functions and tau-functions of (classical) integrable systems is still rather intriguing, it appears
to be much more universal than one could have expected. The same sort of integrable
structure as in the matrix models and/or the topological string theories has been found [11] in
the context of Seiberg–Witten theories [12] or N = 2 supersymmetric gauge theories in four
dimensions.

The similarity between matrix models and supersymmetric gauge theories based on the
similarity of their integrable structures was noted long ago [13]. However, in multidimensional
supersymmetric gauge theories, apart from a recent example [14], one mostly observed the
quasiclassical limit of integrable hierarchies (see [15] for details and references). It means
that the prepotentials of gauge theories are described rather in terms of the quasiclassical
tau-functions or tau-functions of the universal Whitham hierarchy [16], than the tau-functions
of dispersionful hierarchies.

The overwhelming part of the work on the matrix models in the planar (large N) limit
concerned the so-called one-cut case, when the eigenvalues form a single-support distribution,
though a few interesting papers on multi-support distributions have been written in the past,
especially [17] (see also [18, 19]), where the relation with the hyperelliptic curves was revealed.
All these papers were devoted to the one-matrix model (1MM).

Recently, new interest in the multi-cut solutions was born, due to the papers [20], where
the effective superpotentials in the N = 1 supersymmetric gauge theories were related to the
matrix models. The multi-cut solution corresponds there to the breaking of the gauge group
into a few subgroups. It was also proposed in [20] to ‘fill’ with the eigenvalues not only the
minima of the matrix potential, but also the maxima, the situation missed in the matrix model
literature, due to the obvious absence of stability of such configurations. However, from the
mathematical point of view, especially from the point of view of the analytic curve description,
such filling appears to be admissible and even has some nice physical applications. These
aspects of the multi-cut solution were further developed in recent papers [21–23].

In this paper we are going to study the multi-support solutions in the two-matrix model.
As in the one-matrix model case, these solutions can be formulated in terms of the geometry
of the underlying complex curve endowed with a generating differential and a quasiclassical
tau-function, of the type proposed in [16]. We will write explicitly the equation for the
complex curve in the two-matrix model and define the partition function in the planar limit
as a quasiclassical tau-function. We will also study an important degenerate case of real
potentials and demonstrate the consistency of the tau-function approach with the planar graph
expansion (in terms of a multi-phase Ising system on the graphs) for the multi-support solution
in the two-matrix model. Our method of construction of the algebraic curve of the two-matrix
model is powerful enough to be generalizable to the more general multi-matrix models with
so-called tree-like interactions of matrices.

The two-matrix model with the simplest interaction between matrices is known in the
literature in two, superficially different, forms. The partition function of the normal matrix

5 A similar picture arises in the generalized one-matrix model in an external field [7], and it is not surprising that the
multi-support solutions in these models are also related.
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model (NMM)6 of two commuting complex conjugated N × N matrices �,�†: [�,�†] = 0
is defined as follows:

ZN [t, t̄ ] =
∫

D�D�† e−Tr ��†+2ReTr W(�) (1.1)

where the harmonic part of the potential V (�,�†) = −��† + 2Re W(�) is parametrized as
W(�) = ∑K

k=1 tk�
k. Going to the eigenvalues � = diag(z1, . . . , zN ) we obtain7

Z(NMM)
N [t, t̄ ] =

∫ N∏
m=1

(
d2zm e−zmz̄m+2ReW(zm)

) |�(z)|2 (1.2)

the normalization by the unitary group volume VU(N) being hidden in the definition of
integration measure in (1.1). The last integral has a natural interpretation in terms of the
partition function of a Coulomb gas of particles with coordinates zi , confined by the potential
in the exponent.

Almost the same eigenvalue integral can be presented as the partition function of the
model of two Hermitian non-commuting matrices X,Y (H2MM)

Z(H2MM)

N [t, t̃] =
∫

DX DY e−Tr XY+Tr W(X)+Tr W̃(Y ) (1.3)

where W(X) = ∑K
k=1 tkX

k and W̃ (Y ) = ∑K̃
k=1 t̃ kY

k or, in terms of eigenvalues (using, as
usual, the Harish–Chandra–Itzykson–Zuber (HCIZ) formula):

Z(H2MM)
N [t, t̃] =

∫ N∏
m=1

(
dxm dym e−xmym+W(xm)+W̃(ym)

)
�(x)�(y). (1.4)

Now the Jacobian gives �(x)2�(y)2 in contrast to NMM, but the extra powers of Vandermonde
determinants are cancelled by the HCIZ integral.

Indeed, it is not difficult to note that the H2MM is very similar to NMM if we take in the
former K = K̃, t̃ k = t̄ k, k = 1, 2, . . . and compare the eigenvalue representations (1.2) and
(1.4). We see that the difference is only in the fact that in (1.2) the eigenvalues of two matrices
are complex conjugate, whereas in (1.3) they form two independent real sets. The number of
integration variables is the same, only the contours of integration are different. It suggests that
for a large class of potentials W with good convergence properties at infinity (in particular,
for many polynomial potentials) the partition functions should be equal, and the correlators
of the quantities Tr �n, Tr �†m should be the same as the correlators of Tr Xn, Tr Ym. In what
follows we will mostly consider the symmetric case K = K̃ and in particular examples even
restrict ourselves to the case of real coefficients tk = t̄ k.

In the large-N limit the models will also be equivalent for most of the potentials W . The
solution to the saddle-point equation for H2MM gives rise, in general, to two sets of complex
conjugated eigenvalues: xm = zm, ym = z̄m,m = 1, . . . , N , since it is the only way to make
the result for the partition function real for a general set of complex couplings tk. Hence
they will form the same spots of the two-dimensional Coulomb charges with uniform density
ρ(z, z̄) = −∂∂̄V (z, z̄) = 1 as in the case of NMM [25, 9].

The simplest demonstration of this equivalence comes from the direct calculation of the
Gaussian H2MM integral

6 Which is a particular case of the models defined in [24].
7 After taking into account the Jacobian of the angular part of commuting matrices.
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ZGauss
N =

∫
DX DY eTr(−XY+t1X+t̄1Y+t2X

2+t̄2Y
2)

=
(

4π

1 − 4t2 t̄2

)N 2/2

exp N2

(
t̄1t1 + t̄ 2

1 t2 + t2
1 t̄2

1 − 4t2t̄2

)
(1.5)

which, of course, coincides with the partition function of NMM with the same quadratic
potential W(z). The latter has in the large-N approximation the distribution of the eigenvalues
in the shape of an ellipse [25, 26], and the coincidence of results confirms our statement that
in the saddle-point approximation the eigenvalues xk, yk will be complex conjugate and will
also form the same ellipse. Both NMM [9] and H2MM [10] were proposed as matrix models
describing the two-dimensional Laplacian growth processes.

In the next section, we will demonstrate the planar diagram technique for the one- and two-
cut H2MM, relating it to the Ising model and to the two-phase Ising model on planar graphs,
respectively. In section 3, we will reproduce (by an unusual method) the solution of the two-
matrix model in the planar approximation. Using this solution we will build in section 4 the
general algebraic curve (in general not hyperelliptic) describing the multi-support two-matrix
model. We will describe the topology of its Riemann surface and its possible degenerations
into lower genera. In section 5, the free energy of the model will be presented as a tau-function
in terms of the variables corresponding to the periods of holomorphic differentials of the curve.
The cubic case with two-cut degeneration will be considered in detail and a rather explicit
solution for its free energy will be given. In section 6, we will describe the connection of
the model (and of some of its generalizations) to the calculation of effective superpotentials
of N = 4 super Yang–Mills theory softly broken by an appropriate tree superpotential, in
relation to the conjecture of [20]. In section 7, we will sketch out the construction of the
algebraic curves for a very general class of solvable matrix models with tree-like interactions
of the matrices.

2. Combinatorics of planar graphs of the multi-support two-matrix model

The equivalence of NMM and H2MM is useful to give a combinatorial interpretation to the
NMM in terms of planar graph counting. The NMM does not have such a direct interpretation
but the H2MM does. Indeed, the equivalence between (1.1) and (1.3) suggests the following
recipe: if we want to calculate the partition function or the correlators of traces of normal
matrices (without mixture of two matrices inside each trace!) we simply have to calculate the
corresponding quantities in the corresponding H2MM, taking arbitrary Hermitian matrices
X,Y instead of the commuting complex matrices �,�†, and the same set of complex
conjugate couplings tn, t̄ n. We can do it by all available methods in the H2MM: saddle-
point approximation, orthogonal polynomials or loop equations, or even perturbatively in the
couplings, by the direct planar graph expansion.

2.1. One-support case: Ising spins on planar Feynman graphs

Let us recall that the H2MM was used in [3] to define and solve exactly the Ising model
on dynamical planar lattices. The role of these lattices is played by planar Feynman graphs
and the positions of each spin correspond to two types of interaction vertices (X-vertex and
Y-vertex as spin-up and spin-down). In this respect, we can say that the NMM also describes
the Ising model on planar graphs. The phases of the complex couplings correspond here
to some generalized (imaginary) magnetic fields, whose values depend on the phases of
couplings.
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For example, the two-matrix model with cubic interactions describes the statistics of
Ising spins on �3-type planar graphs (or, due to the Kramers–Wannier duality, on planar
triangulations):

Z(I )
N [γ, λ, λ̄] =

∫
D�D�† eTr(−�†�+ γ

2 (�2+�†2)+ λ
3 �3+ λ̄

3 �†3). (2.1)

It corresponds to the following choice of couplings in (1.1): t1 = t̄1 = 0, t2 = t̄2 =
γ /2, t3 = λ/3, t̄3 = λ̄/3. Note that this choice of couplings does not lead to loss of
generality: any cubic potential can be brought to that used in (2.1) by constant shifts of
matrices X → X + const, Y → Y + const and the phase rotations X → eiθX, Y → e−iθY .

Let us denote λ = g eiH . The planar �3-graphs are generated in the large-N limit by
the expansion of (2.1) in powers of g, and the corresponding Feynman rules can be given
a statistical–mechanical interpretation in terms of the Ising model on �3-type planar graphs
with the temperature 2

log γ
and the imaginary constant magnetic field iH [3].

The solution of the two-matrix model describing the Ising spins on planar graphs
corresponds to the situation when the eigenvalues for both matrices form one connected
support around the classical minimum of the potential corresponding to � = �† = 0.

2.2. Multi-support case: multi-Ising phases

Both NMM and H2MM admit in the large-N limit the multi-support solutions, in analogy
with the Hermitian one-matrix model, where they were studied from the point of view of their
relation to the hyperelliptic curves in the works [17–19], and recently in [20, 21]. In the case
of NMM the eigenvalues zk, z̄k are distributed with constant density in a set of disconnected
spots on the complex plane z. Our main purpose in this paper is to describe and classify such
solutions from the point of view of the underlying algebraic curves.

We will work in the notation corresponding to the complex conjugated zk, z̄k of the NMM.
However, all results will be true for the independent zk, z̄k, as in the H2MM.

The eigenvalue supports appear around the extrema of the potentials. Note that in the
sense of analytic continuation one can also formally ‘fill up’ all extrema of the potential and
not only the minima. This leads to more general solutions [20] leading to important physical
applications. The extrema of the potential V (z, z̄) = −zz̄ + W(z) + W(z̄) are at the points
defined by the system of equations

z̄ = W ′(z) z = W
′
(z̄). (2.2)

In general, for potentials of degree (n + 1) we have n2 extrema.
To be more concrete let us study the case of a cubic polynomial potential (related to the

one in (2.1) by a simple shift of variables):

V (z, z̄) = −zz̄ + T (z + z̄) +
g

3
(z3 + z̄3) (2.3)

with real couplings T and g, and fill out only the two extrema obeying the reality condition
z = z̄. The classical equations (2.2) for the extrema of (2.3) can be written in the form of a
‘classical’ curve8

1

g2
(z̄ − gz2 − T )(z − gz̄2 − T )

= z2z̄2 − 1

g
(z3 + z̄3) +

T

g
(z2 + z̄2) +

1

g2
zz̄ − T

g2
(z + z̄) +

T 2

g2

= 0 (2.4)
8 Compare it to the curve for the one-support solution in [27].
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and the solution has n2 = 4 extrema, two extrema for z = z̄ and another two for z+ z̄ = −1/g.
The potential can be expanded around the extrema z = z̄ as follows:

V (z, z̄) = −(z − ẑa)(z̄ − ẑa) +
ma

2
((z − ẑa)

2 + (z̄ − ẑa)
2)

+
g

3
((z − ẑa)

3 + (z̄ − ẑa)
3) ± const (2.5)

where a = 1, 2,

ẑ1,2 = 1

2g

(
1 ±

√
1 − 4Tg

)
(2.6)

and m1,2 = 2gẑ1,2. We will not consider the filling of the spots corresponding to other extrema,
with z + z̄ = −1/g (later we will discuss this fact in a more general context).

Let us regroup the eigenvalues into two groups and denote(
z1 − ẑ1, . . . , zN1 − ẑ1

) = (
a1, . . . , aN1

)
(
zN1+1 − ẑ2, . . . , zN − ẑ2

) ≡ (
b1, . . . , bN2

)
N1 + N2 = N

(2.7)

and the same for the conjugated variables9, corresponding to their positions in the first or
second spot, respectively. Now we can use the eigenvalue representation (1.2) and rewrite this
integral in terms of Hermitian matrices A, Ã , of size N1 ×N1 and B, B̃ of size N2 ×N2 and a
pair of complex rectangular anticommuting ghost matrices C, C̃ of size N1 × N2, as follows:

ZN [t, t̃] =
∫

DADÃDB DB̃ DC DC̃ eNTr S(A,Ã,B,B̃,C,C̃) (2.8)

where

S(A, Ã, B, B̃, C, C̃) = −AÃ +
m1

2
(A2 + Ã2) +

g

3
(A3 + Ã3) − BB̃ +

m2

2
(B2 + B̃2)

+
g

3
(B3 + B̃3) − mC†C − mC̃†C̃ − gC†CA + gCC†B − gC̃†C̃Ã + gC̃C̃†B̃

(2.9)

and m = √
1 − 4Tg. To rewrite the eigenvalue integrals as matrix ones, we used the HCIZ

formula for the U(N1,2) group integral∫
[d	]U(N1) eTr(	†x	x̄) ∝ detij eai āj

�(a)�(ā)

and similarly for b, b̄. The matrices C, C̃ served to exponentiate the cross-products∏
k,m(ak − bm)(āk − b̄m) in the Vandermonde determinants in (1.2) (see the similar method

for the one-matrix model in [17, 21]).
Now we can give the model (2.9) a combinatorial interpretation in terms of the planar

graph expansion. Namely, we expand (2.8) in the cubic coupling g, for the fixed m1,m2,m.
The diagram technique consists of the following elements:

propagators: 〈AA〉0 = 〈ÃÃ〉0 = 2m1

m2
1 − 1

〈AÃ〉0 = 2

m2
1 − 1

〈BB〉0 = 〈B̃B̃〉0 = 2m2

m2
2 − 1

〈BB̃〉0 = 2

m2
2 − 1

(2.10)

〈C†C〉0 = 〈C̃†C̃〉0 = 1/m

9 In the case of the H2MM one can imagine the situation when the filling numbers of the variables z̄i are not the
same as for zi : N ′

1 �= N1, N
′
2 �= N2; we do not consider this situation here.
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Figure 1. A planar graph of the two-matrix model with two eigenvalue supports. There are two
phases here: a thin line phase (inside the circles) and a thick line phase (outside the circles).
Each phase corresponds to two different kinds of Ising spins having different temperatures: the
spins looking ‘up’ are located in the triple vertices made of solid double lines, and the spins
looking ‘down’ are located in the triple vertices made of dotted double lines. The three types of
propagators inside each phase (solid, dotted and mixed) describe the interactions depending on the
mutual orientation of the neighbouring spins. Along the interphase (ghost) lines drawn by circles,
the spins have the same orientation.

vertices: 〈AAA〉0 = 〈ÃÃÃ〉0 = 〈BBB〉0 = 〈B̃B̃B̃〉0

= −〈C†CA〉0 = 〈CC†B〉0 = −〈C̃†C̃Ã〉0 = 〈C̃C̃†B̃〉0 = g. (2.11)

Each type of propagator 〈C†C〉0 and 〈C̃†C̃〉0 forms closed loops on Feynman graphs, each
loop entering with the factor (−1).

A typical planar graph for the two-support model is presented in figure 1. Let us classify
the index loops of each planar graph (or a graph of a fixed topology) as carrying the index
i = 1, . . . , N1 (solid line), or the index i ′ = 1, . . . , N2 (dotted line). The ghost loops (drawn
by a double line formed by a thick and a thin line) will separate two phases on the planar graph:
one described by the matrices A, Ã (thick line phase) and another described by the matrices
B, B̃ (thin line phase). Each of these phases corresponds to the dynamic Ising spins of first
and second kinds, as described in the previous subsection for the single-support case. At the
phase boundaries formed by the ghost loops, the spins have the same orientation (two types
of ghosts C and C̃ correspond to two possible orientations). Each solid index loop contributes
a factor N1, and each dotted index loop a factor N2.

Let us note at this point that for gT < 1/4 we always have real m1 > 0,m2 > 0, but the
determinants of second derivatives of the action at two different extrema are m2

1 − 1 > 0 and
m2

2 − 1 < 0 respectively, which means that the first extremum is the true minimum, and the
second is a saddle point of the potential.

One last comment about this diagram technique: as was done in [21] for the two-cut one-
matrix model, we can do the following formal operation with each graph, without changing
its contribution: we can change the contribution of each ghost loop from (−1) to 1, change
the sign of each BB, B̃B̃ and BB̃ propagator, and the sign of N2.10

10 We will see in the next sections that gN1/N and gN2/N can be viewed as independent variables in the planar limit,
as in the one-matrix model case [21].
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All this means that we can consider instead of the matrix model (2.8), (2.9), the matrix
model with the action

S(A, Ã, B, B̃, C, C̃) = −AÃ +
m1

2
(A2 + Ã2) +

g

3
(A3 + Ã3) + BB̃ − m2

2
(B2 + B̃2)

+
g

3
(B3 + B̃3) − mC†C − mC̃†C̃ + gC†CA + gCC†B + gC̃†C̃Ã + gC̃C̃†B̃.

(2.12)

Here C and C̃ are already the usual commuting complex N1 ×N2 rectangular matrices (the sign
of N2 is again normal here). We also changed the variables as follows: A → −A, Ã → −Ã.

In this new representation of the same model, the perturbative g-expansion goes around
the true minima of the potential, and the contributions of planar graphs are positive. The
planar expansion of this matrix model defines the statistical–mechanical model on random
dynamical graphs describing a two-phase system, each phase corresponding to the system of
Ising spins with the ferromagnetic boundary condition on the phase boundary. Note that since
we have two independent ‘cosmological constants’: the coupling g and N2/N , but only one
parameter T related to the (different) temperatures of two kinds of Ising spins, hence we cannot
make both types of Ising spins critical at the same time. We need for that higher powers of the
potential. In a sense, our multi-cut solution generalizes the ADE models proposed in [28, 29].

Let us conclude this section by noting that much of what we did here on the two-support
case can be carried over to the four-support case of this model and to the multiple supports for
the potentials of higher degree. However, unlike the cubic case with real couplings, the details
are difficult to work out. Below we will return to the cubic potential and discuss in detail the
generic four-support structure. We will also see that the generic four-support solution has a
very natural two-support ‘degeneration’, corresponding precisely to the perturbation theory
considered in this section.

3. Solution of the model in the planar limit

Let us now turn to the solution of the two-matrix model in the planar or large-N limit. As is
well known in this case, the computation of matrix integrals (1.1) or (1.3) can be reduced to
the solution of the saddle-point equation.

The saddle-point equation for the model (1.2) with the eigenvalues z1, . . . , zN (or
analytically continued saddle-point equation for (1.4)) reads

z̄k = W ′(zk) +
∑
j ( �=k)

1

zk − zj

(3.1)

together with the complex conjugated equation. For the resolvents of distributions of the
eigenvalues

G(z) = h̄

〈
Tr

1

z − �

〉
Ḡ(z̄) = h̄

〈
Tr

1

z̄ − �†

〉
(3.2)

it can be written as

z̄ = W ′(z) + G(z) z = W
′
(z̄) + Ḡ(z̄) (3.3)

where the resolvent has the usual asymptotic at large z or z̄ for the finite supports:

G(z) → t0/z + O(1/z2) Ḡ(z̄) → t0/z̄ + O(1/z̄2). (3.4)

To fix the resolvents in (3.3) we have to impose the condition that the functions z̄(z) and z(z̄)

are mutually inverse:

z̄(z(x)) = x. (3.5)
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To justify this condition we recall once again that the solutions of these equations describe the
spots of Coulomb charges with the uniform distribution of the eigenvalues with coordinates
(z1, z̄1), . . . , (zN , z̄N ) with the density ρ(z, z̄) = 1. The boundaries of the spots are in general
smooth curves in the complex plane z depending on the couplings of the potential. To fix the
form of these boundaries it is enough to consider the equations (3.3) at the boundary. Then both
equations should define the same curve z̄(z). It means that the solutions of these equations,
z̄(z) and z(z̄) respectively, should be mutually inverse, i.e. obey equation (3.5)11. Note that
in general z̄ should be treated as an independent function on the complex manifold (with
involution) and it becomes literally complex conjugated to the function z only on some real
section—the real analytic curve in the sense of [9], which is just a boundary of the eigenvalue
distribution. To avoid further misunderstanding in what follows we will denote this function
as z̃(z), so that z̃(z) = z̄ (i.e. is literally complex conjugated only on the boundaries of the
spots).

In the quasiclassical, or dispersionless, limit one considers the free energy of the matrix
ensembles to be defined as a ‘planar’ limit

F(t, S) = lim

(
h̄2 logZ

(
t

h̄

))
(3.6)

implying N → ∞, h̄ → 0 with Nh̄ = t0 being fixed. In (3.6) t denote the parameters of
the potential V (z, z̄) = −zz̄ + W(z) + W(z̄) while S are the new variables directly related to
the ‘filling numbers’ of various eigenvalue supports. More strictly, by the planar limit (3.6)
one usually understands the solution to the variational problem

F ∝
∫

V (z, z̄)ρ(z, z̄) d2z −
∫

d2z1 d2z2ρ(z1, z̄1)ρ(z2, z̄2) log |z1 − z2|

+
∑

α

vα

(∫
ρ(z, z̄) d2z − Sα

)
(3.7)

which is the ‘stationary phase’ condition for corresponding matrix integrals (1.2), (1.4).
Note that the normalization of the density at different supports is achieved by the Lagrange
multipliers vα . The dispersionless tau-function can be obtained from (3.7) by the substitution
of the saddle-point solution ρ = ρc of the saddle-point equation

δF
δρ(z, z̄)

= 0

or

vα =
∫

d2z′ρ(z′, z̄′) log |zα − z′| − V (zα, z̄α) (3.8)

for any point Pα = (zα, z̄α) belonging to one of the supports, labelled by α.
In the next two sections we will first discuss the structure of the complex curve (3.3)

for two-matrix model and then define the free energy (3.7) as a (logarithm) of quasiclassical
tau-function.

4. Complex curve for the two-matrix model

The reality condition suggests the following ansatz for the solution to (3.3):

F(z, z̃) =
∑
i,j

fij z
i z̃j = 0 (4.1)

11 A more rigorous derivation of these equations from the method of orthogonal polynomials can be found in [5, 6].
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z

n+1

n+1

z

Figure 2. The Newton polygon for the curve (4.2). The highest degree terms in (4.2) determine the
shape of the polygon and the integer dots inside it count the number of holomorphic differentials,
or genus of the curve. Clearly, this number is equal to the area of the ‘dual’ square except for one
(black) point, so that g = n2 − 1.

with the coefficients obeying the symmetry: fij = f̄ ji .12 Due to this symmetry the
equation (3.5) will be automatically satisfied.

The coefficients fij can be partially fixed by the asymptotic:

z̃(z)|z→∞ 
 W ′(z) +
t0

z
+ O

(
1

z2

)

following from (3.3) and (3.4), but the number of parameters of the potential grows linearly
with its degree while the number of coefficients of (4.1) grows quadratically. The rest of the
parameters will correspond to the eigenvalue filling numbers for various spots (supports of the
eigenvalues on the z plane). Altogether they will play the role of moduli of complex structure
of the algebraic curve defined by equation (4.1).

One may also think of the analytic curve (4.1) as of the algebraic form of the large-N
loop equations in H2MM (but not in NMM!) for the resolvent G(z) [30, 27], or for the matrix
model in external field [31], where it was first proposed.

4.1. Structure of the curve

We can give precisely the algebraic equation of the curve (4.1) for the mutually complex
conjugated potentials of degree K = n + 1 (with a few explicitly given highest degree terms)

F(z, z̃) = znz̃n + azn+1 + āz̃n+1 +
∑

i,j∈(NP )+

fij z
i z̃j = 0 (4.2)

where the first three terms correspond to the three points on the boundary lines of the Newton
polygon (square in this case) in figure 2, and the sum over (NP)+ in the last term means the
sum over the points inside the Newton polygon (including the points on both axes not marked
in figure 2). For example, there are eight terms in this sum for n = 2.

12 Since any such curve should be consistent with its real section, the equation F(x + iy, x − iy) = P(x, y) = 0 with
real coefficients.
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One may compare this equation with (2.4) and see that the higher degree terms are always
fixed by the ‘classical’ equations on extrema of the matrix model potential. The properties of
the curve (4.2) can always be easily established via the Newton polygon in figure 2.

Counting the number of integer points inside the polygon one finds that the number of
holomorphic differentials, or genus of the curve, is equal to

g = n2 − 1. (4.3)

A simple basis for the holomorphic differentials can be chosen as

dvij = zi z̃j dz̃

Fz

= −zi z̃j dz

Fz̃

(4.4)

with the degrees i = i ′ − 1 and j = j ′ − 1, where (i ′, j ′) ∈ NP are coordinates of the points
strictly inside the Newton polygon, without the boundary points (see figure 2)13.

Finally let us point out here that for the models with non-symmetric potentials W and
W̃ one may write the spectral curve equation in a similar way, but it would not obey such
symmetric properties. For the potentials W and W̃ of degrees n + 1 and ñ + 1, respectively,
the highest terms will always be of a particular form

F(x, y) = xnyñ + Axn+1 + Byñ+1 +
∑

(i,j)∈(NP )+

fijx
iyj (4.5)

and the genus of the curve (4.5) is nñ− 1. It means that the (n + 1)× (n + 1) square in figure 2
should be replaced by the rectangle of the size (n + 1) × (ñ + 1) with all other elements of the
construction remaining intact. Of course, for ñ = 1, integrating over the matrix with Gaussian
potential one returns to the 1MM with the (hyperelliptic) curve of genus n − 1.

4.2. The cubic example

To understand better the structure of the curve let us first discuss in detail the cubic example.
Writing equation (4.2) first with arbitrary coefficients

F(z, z̃) = z2z̃2 + az3 + āz̃3 + bz2z̃ + b̄zz̃2 + cz2 + c̄z̃2 + f zz̃ + qz + q̄ z̃ + h = 0 (4.6)

one finds that its structure is in fact very similar to the equation of the ‘classical’ curve (2.4).
Indeed, equation (4.6) should be consistent with the asymptotic

z̃ = W ′(z) + G(z) =
3∑

k=1

ktkz
k−1 + O

(
1

z

)
≡ λz2 + γ z + η + O

(
1

z

)
. (4.7)

Substituting (4.7) into equation (4.6) and collecting the coefficients in front of the terms z6, z5

and z4 one obtains

a = − 1

λ̄
= − 1

g
b = γ̄

λ̄
= 0 c = η̄

λ̄
− γ

λλ̄
+ 2

γ̄ 2

λ̄2
= T

g
(4.8)

and their complex conjugated counterparts, i.e. the coefficients at higher degree terms are
indeed completely fixed by parameters of the potential (2.3). Four lower degree coefficients
f, q, q̄ and h correspond to the bipole differential and three holomorphic differentials14. Their
classical ‘expectation values’ are presented in equation (2.4).
13 For example, for n = 2 there are three points inside the polygon: i′, j ′ > 0 and i′ + j ′ � 2, then the holomorphic
differentials are labelled by i, j � 0 and i + j � 1.
14 Note that the curve (4.2), (4.6) is written implying some reality condition on the coefficients, but as usual, the
deformations of these coefficients should be considered as independent complex variables.
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Figure 3. Cubic curve as a cover of z-plane.
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Figure 4. Generic curve of the two-matrix model as a cover of the z-plane.

Let us now present the curve (4.6) as a Riemann surface of a multi-valued function
z̃(z). Then it can be thought of as a three-sheet cover of the complex z-plane. On the first,
physical sheet, there are no branch cuts at z → ∞, as follows from the asymptotic (4.7). This
asymptotics should be supplemented by the ‘complex-conjugated’ asymptotics

z = W
′
(z̃) + O

(
1

z̃

)
(4.9)

on ‘unphysical’ sheets. Then it is clear from (4.7) and (4.9) that on the physical sheet at infinity
z̃ ∝ z2, while on two unphysical sheets z̃ ∝ √

z and two infinities on unphysical sheets are
‘glued’ by a cut.

The branch points at z-plane are determined by zeros of the differential dz, or by Fz̃ = 0.
Considering the simplest non-degenerate case of the curve (4.6)

z2z̃2 + az3 + āz̃3 + h = 0 (4.10)

it is easy to see that there are nine branch points in the z-plane (of course, one comes to the
same conclusion looking at the Cardano formula).

The structure of the curve can then be presented as in figure 3. It is clear from this
picture that the curve can be presented as two copies of P1 ‘glued’ by four cuts, i.e. in general
position it has the genus g = 3. There are two ‘infinities’ z = ∞, z̃ = ∞, one of them is a
branch point. We have shown schematically the possible cuts and the corresponding choice
of canonical A-cycles.

To conclude the picture, let us make a few comments about the curve (4.2) for a potential
of a generic degree n, i.e. when W ′(z) ∼ zn + . . . . This curve (see figure 4) can again be
presented as two P1 glued by n stacks of cuts. One of these P1 corresponds to the ‘physical
sheet’, the other one is glued at ∞− from n copies of ‘unphysical’ z-sheets. Each stack consists
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Figure 5. Generic curve of the two-matrix model as a double of z and z̄ planes. One takes
the Riemann surface of the function z̃(z), as in figure 4, and its ‘mirror’ Riemann surface of the
function z(z̃) which possesses the same structure. Cutting the physical sheets one may glue them
together along the (real) curves z̄ = z̃(z).

of n cuts, so their total number is n2 among which one can choose n2 − 1 independent, whose
number is equal to the genus of this Riemann surface.

The differential dz always has a pole of the second order at ∞+ on the upper, or ‘physical’
sheet, and a pole of the order n+ 1 at ∞− since z|∞− ∝ z̃n + . . . . It gives altogether n+ 3 poles
and from the Riemann–Roch theorem one concludes that the number of branching points, or
zeros of dz, is equal to

#(dz = 0) = n + 3 + 2(n2 − 1) − 2 = 2n2 + n − 1 (4.11)

reproducing nine for n = 2. In general this gives exactly 2n2 branch points, producing simple
cuts and (n − 1) ramification points, connected by cuts with ∞−.

Finally, let us point out that the structure of the curve (4.2) and figure 4 is consistent with
the structure of the ‘double’ in z and z̄ variables, explicitly seen in the one-support solution
[9] and proposed to be a feature of the multi-support solutions by Krichever [32]. Indeed,
equation (4.2) is ‘symmetric’ with respect to z and z̃ variables, so instead of the picture in
figure 4, one can draw a ‘dual’ picture of a (n + 1)-sheet cover of the z̃-plane. These dual
pictures can be combined together as in figure 5. Cutting ‘physical’ sheets from both pictures
one may glue them together, forming a double with involution z ↔ z̄. The only delicate point
is that these z and z̄ sheets should be glued together along the boundaries of the spots where
z̃(z) = z̄ and vice versa, in contrast to the picture of figure 4, where the sheets are glued along
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γ

Figure 6. The boundary of the spot γ and a cut of a multi-valued function z̃(z) inside the spot. On
γ one has an equality z̄ = z̃(z) but this is not true on the cut.

the cuts on the Riemann surface of the multi-valued function z̃(z) defined by the solution to
equation (4.2). Both sheets of the double (the lower picture in figure 5) generally have n2

spots.
The difference between the boundary of a spot and a cut of a multi-valued function is

demonstrated in figure 6. One obviously gets the following relations for the two-dimensional
and contour integrals∫

spot
dz ∧ dz̄ =

∮
γ

z̄ dz =
∮

γ

z̃ dz =
∮

cut
z̃ dz (4.12)

which clarify the equivalence of the two pictures in figure 5. Relations (4.12) allow us to endow
the complex curve (4.2) with a meromorphic generating differential z̃ dz (or the generating
differential of the form dS = y dx ∼= −x dy in the asymmetric case (4.5)).

4.3. Degenerate curves

Let us now discuss how the curve (4.2) can be degenerated. The (smooth) genus g = n2 − 1
of the curve (4.2) decreases if there exists a nontrivial solution to the system of equations

F(z, z̃) = 0 dF = 0. (4.13)

It imposes certain constraints on the coefficients of fij of equation (4.2), which can be found,
say by computing the resultant of the equations (4.13). However, these constraints cannot be
really resolved for a general position.

To get an idea of how the curve (4.2) can be degenerated, consider first the cubic case
(4.6) and let us make all coefficients of this equation real. Then, it is easy to see that it can be
rewritten in the form

Y 2 + aX3 + cX2 + qX + h − 1
4 ((3a − b)X + 2c − f )2 ≡ Y 2 + P(X) = 0 (4.14)

where

X = z + z̃ Y = zz̃ − 1
2 ((3a − b)X + 2c − f ). (4.15)

One may ‘tune’ for simplicity the coefficients of the potential (4.8) to get 3a = b and 2c = f .
The formulae (4.15) show that our curve (4.2) can be presented as a double cover of the torus
(4.14) with four branch points which are solutions to equation (4.6) under the substitution
z̃ = z, where the transformation (4.15) becomes singular. Hence, the curve (4.6) can also be
presented (in addition to figure 3) as two tori glued by two cuts (see figure 7).

Now it becomes clear how this picture can be degenerated. Rewriting equations (4.13) as

Fz̃ = zFY + P ′(X) Fz̃ = z̃FY + P ′(X) (4.16)

one immediately finds that they lead either to z = z̃ or to FY = 0 and P ′(X) = 0. In the
second case the torus (4.14) degenerates, while z = z̃ leads to degeneration of the cover of
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Figure 7. Curve (4.6) as double cover of the torus. When the torus (4.14) degenerates, the genus
g = n2 − 1 = 3 curve (4.6) degenerates into the curve gred = n − 1 = 1.

n

Y

n+1 X

Figure 8. The Newton polygon for the curve (4.17) gives the genus g∗ = n(n−1)
2 .

this torus. We will be more interested in the degeneration of the torus since, for example,
it corresponds to filling of the ‘correct’ vacua (real eigenvalues) in the perturbative picture
considered in section 2.

When the torus degenerates into a rational curve, one gets the Riemann surface (4.6)
presented as a double cover of this rational curve with two cuts, i.e. as a Riemann surface
of genus g = 1 with smooth handles of tori degenerated into (a pair of) singular points (see
figure 7).

The equations of degeneration of the torus (4.14) can easily be written using the conditions
for the double root of the polynomial P(X). Explicitly, these conditions acquire the form of
the discriminant of P(X) or the resultant of the two polynomials P(X) and P ′(X).

Now, in the general case (4.2) with real coefficients a substitution analogous to (4.15)
brings it to the form

Y n + Xn+1 + · · · = 0 (4.17)

where by dots we denote monomials of lower degrees in X and Y, and there are no ‘mixed’
terms in equation (4.17). The genus of the curve (4.17) can easily be computed again by the
Newton polygon (figure 8), which gives

g∗ = n(n − 1)

2
. (4.18)
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Figure 9. The general curve (4.2) as a double cover of the curve (4.17) with a genus g∗ = n(n−1)
2 .

Similarly to figure 7, when the curve (4.17) completely degenerates into a rational curve the curve
of two-matrix model (4.2) degenerates into the curve of genus gred = n − 1.

In the same way one may present the generic curve of the two-matrix model (4.2) as a double
cover of (4.17) with 2n branch points. Indeed, the Riemann–Hurwitz formula

2 − 2g = #S · (2 − 2g0) − #BP (4.19)

where #S is the number of sheets and #BP is the number of branch points, gives for g = n2 −1
and g0 = g∗ exactly #BP = 2n. It means that the generic curve of the two-matrix model (4.2)
can be presented as a double cover of the curve (4.17) with n cuts, and when the curve (4.17)
degenerates into a rational one, the curve (4.2) has the genus (figure 9)

gred = n − 1. (4.20)

4.4. Rational degenerations

Let us finally say a few words about the rational degenerations of (4.2), i.e. when its (smooth)
genus vanishes. A particular example of such a totally degenerate curve is given by the
‘classical’ curve (2.4), but the rational case can easily be studied for the generic values of
coefficients in (4.2), i.e. without any reality restriction.

In such a situation equation (4.2) can be resolved via the (generalized) conformal map

z = rw +
n∑

k=0

uk

wk
z̃ = r

w
+

n∑
k=0

ūkw
k (4.21)

and the substitution of (4.21) into (4.2) gives a system of equations, expressing all coefficients
fij in terms of parameters of the conformal map (4.21).

Indeed, substituting (4.21) into (4.2) and computing the residues one finds that the
expressions

Rl[F ] = res

(
dw

w
wlF (z(w), z̃(w))

)
= 0 (4.22)
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for l = −n(n + 1), . . . , n(n + 1) form a triangular system of equations onto the coefficients
fij . It means that each of the equations (4.22) is linear in one of the coefficients, and can be
resolved step by step, starting from the ends of the chain.

For the cubic potential (n = 2) the solution is

a = − r2

u2

b = u1r

u2
− 2ū0

c = −u1rū0

u2
+ ū2

0 − 2rū1 + 3
r2u0

u2
− r3ū1

ū2u2

f = r2 − 2u2ū2 + 4u0ū0 +
r4

ū2u2
− u1ū1 − 2

rū1ū0

ū2
+

r2ū1u1

ū2u2
− 2

ru0u1

u2

q = −3
r2u2

0

u2
+ 2u2ū2ū0 − u2ū

2
1 − 2

r2ū2
1

ū2
− r4ū0

ū2u2
− 3rū2u1 + ū0u1ū1 + 4u0rū1 − 2ū2

0u0

− rū1u1
2

u2
− r2ū0 + 2

ru1ū0u0

u2
+ 3

r3u1

u2
+

rū1ū
2
0

ū2
− r2ū0u1ū1

ū2u2
+ 2

u0r
3ū1

ū2u2

h = − r6

ū2u2
+

r2ū3
0

ū2
+ ū2ū0u

2
1 − u0rū1ū

2
0

ū2
+ u2u0ū

2
1 − 3

r3ū0ū1

ū2
− ū2u

3
1r

u2

− u2rū
3
1

ū2
+

r2u3
0

u2
+ 2

r4ū1u1

ū2u2
+

u0ū0ū1r
2u1

ū2u2
− r3u1ū

2
0

ū2u2
− r3ū1u

2
0

ū2u2
− u2

1ū
2
1r

2

ū2u2

+ 3r4 + ū2
0u

2
0 +

u2
1ū1u0r

u2
− 2ū2

0u1r + 2
u1

2r2ū0

u2
+

u1ū
2
1rū0

ū2
+ r2ū0u0

− u1ū1u0ū0 +
u0ū0r

4

ū2u2
+ u2

2ū
2
2 − u1rū0u

2
0

u2
− 2rū1u

2
0 + 2

u0r
2ū2

1

ū2
− 3

r3u0u1

u2

− ū1u1ū2u2 − 3r2ū2u2 + 3u2rū1ū0 − 2ū2u2ū0u0 − ū1r
2u1 + 3u0rū2u1

together with the ‘complex conjugated’ expressions for ā, b̄, c̄ and q̄, where one should replace
uk by ūk and vice versa. Resolving (4.22) one gets the explicit description of the rational
degeneration of the curve (4.2) in terms of the coefficients of conformal map (4.21). However,
in a general situation they are only implicitly defined through the parameters of the potential
V (z, z̄).

5. Quasiclassical tau-function

Let us now define the partition function for the two-matrix model (3.7) in terms of the
quasiclassical tau-function introduced in [16]. First, we discuss the simpler example of
the one-matrix model and then turn to the particular features of the two-matrix case. The
hyperelliptic curve of the one-matrix model was first discussed in [17], and recently, in the
most general form including all the extrema of the potential, in [20] (see also [21, 33]).

5.1. One-matrix model

The complex curve of the one-matrix model

Z =
∫

d� eTr Wn(�) (5.1)
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with the model potential

W ′
n(�) =

n∑
k=1

ktk�
k−1 (5.2)

comes from the very simple loop equation G2 + 2W ′
n(λ)G − f (λ) = 0 (see, for example, [34]

or [4]). It is always hyperelliptic, i.e. can be rewritten in the form

y2 = W ′
n(λ)2 + f (λ) (5.3)

with y = G + W ′
n and the moduli hidden in the coefficients of the polynomial

f (λ) =
n−1∑
k=0

fkλ
k. (5.4)

The generating differential is chosen as

dS1MM = y dλ (5.5)

and additional variables, corresponding to the eigenvalue filling numbers, can be introduced
through its periods

Si =
∮

Ai

dS1MM (5.6)

directly related to the integrals of density over the eigenvalue supports. Then

∂ dS1MM

∂Si

= dωi

∮
Ai

dωj = δij (5.7)

where the derivatives are taken at fixed coefficients {tl} of the potential W ′
n(λ) (5.2). As usual,

the periods dual to (5.6) are given by the integrals over dual cycles

�1MM
i =

∮
Bi

dS1MM. (5.8)

To complete the set of parameters of the model, we have to add to the filling numbers (5.6)
and coefficients of the potential (5.2) the variable

res∞+ (dS1MM) = −res∞−(dS1MM) = fn−1

2tn
≡ t0 (5.9)

so that

∂ dS1MM

∂t0
= tn

λn−1 dλ

y
+

1

2

n−2∑
k=0

∂fk

∂t0

λk dλ

y
. (5.10)

The dependence of {fk} with k = 0, 1, . . . , n − 2 upon t0 is fixed by∮
Ai

(
tn

λn−1 dλ

y
+

1

2

n−2∑
k=0

∂fk

∂t0

λk dλ

y

)
= 0 (5.11)

which gives for i = 1, . . . , n − 1 exactly n − 1 relations on f0, f1, . . . , fn−2. The bipole
differential (5.10) can also be rewritten as

d	± = ∂ dS1MM

∂t0
= d log

(
E(P,∞+)

E(P,∞−)

)
(5.12)
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where E(P,P ′) is the prime form on (5.3). Obviously, the differentials (5.12) obey the
properties

res∞+ d	± = −res∞+ d	± = 1∮
Ai

d	± = 0 i = 1, . . . , n − 1.
(5.13)

To complete the setup one should also add to (5.8) the following formula

�0 =
∫ ∞+

∞−
dS1MM (5.14)

which can be regularized in the usual way presenting the puncture at infinity as a degenerate
handle. The partition function of the multi-cut solution of the 1MM is defined now in terms
of the quasiclassical tau-function F1MM obeying the equations

∂F1MM

∂S1MM
i

= �1MM
i

∂F1MM

∂t0
= �0. (5.15)

In the papers [20], instead of t0 the parameter S̃ = t0 −∑n−1
i=1 Si ≡ Sn was used. This is a non-

standard definition of the homology basis on (5.3) and it gives rise to the divergences at infinity.
However, the basis of [20] is related to the canonical one by a linear change of variables, where
no divergences appear (except for the trivial one in (5.14)) and the integrability of (5.15) (the
symmetry of second derivatives) follows from the Riemann bilinear relations, including the
symmetry of the period matrix of (5.3).

5.2. Two-matrix model (general symmetric potential)

In the same way, the filling numbers can be defined for the two-matrix model

Si = 1

2π i

∫
ith spot

dz ∧ dz̄ = 1

2π i

∮
Ai

z̃ dz =
∮

Ai

dS2MM (5.16)

i.e. as periods of the generating differential

dS2MM = 1

2π i
z̃ dz (5.17)

under the appropriate choice {Ai} for the basis of A-cycles on the Riemann surface (4.2).
This is illustrated by figure 4 (or by its particular cubic case figure 3), taking into account
figure 6 and equation (4.12). From (5.16) one still gets in the same way the analogues of the
formulae (5.7)

∂ dS2MM

∂Si

= dωi

∮
Ai

dωj = δij (5.18)

where the canonical holomorphic differentials (now on the curve (4.2)) are certain linear
combinations (with moduli-dependent coefficients) of g = n2 −1 ‘lower degree’ holomorphic
differentials (4.4).

The derivatives of (5.17) with respect to the coefficients of equation (4.2) can be
computed in the standard way. Choosing z as a covariantly constant function one writes
for (4.2)

Fz̃δz̃ + δF = 0 (5.19)

where δF ≡ ∑
i,j δfij z

i z̃j is a variation of only the coefficients of (4.2). Then the variation
of (5.17) gives rise to

δz̃ dz = −δF
dz

Fz̃

= −
∑
i,j

δfij z
i z̃j dz

Fz̃

. (5.20)
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Expression (5.20) contains a decomposition of the variation of the meromorphic differential
(5.17) over some basis of meromorphic and holomorphic differentials on the curve (4.2). It is
easy to check that the coefficients fij corresponding to the meromorphic Abelian differentials
of the second kind can be expressed through the parameters of the potential V (z, z̄) of
the two-matrix model, namely, through the coefficients of its harmonic part W(z)+ W̄ (z̄). The
corresponding relations follow from the fact that the complex curve (4.2) should satisfy the
asymptotic expansion of the branch

z̃ = W ′(z) + O

(
1

z

)
=

n+1∑
k=1

ktkz
k−1 + O

(
1

z

)
(5.21)

which gives rise, e.g., to ā−1 = −(n + 1)tn+1, etc.
The rest of the coefficients fij consist of the coefficient corresponding to the third

kind Abelian differential (with the first-order pole) and the holomorphic differentials (4.4).
Fixing the coefficients expressed through the parameters of the potential in (5.20) and taking
appropriate linear combinations, one arrives at (5.18).

As will be shown below, the dependence of the free energy (3.7) upon the filling numbers
(5.16) is defined by

∂F
∂Si

=
∮

Bi

dS2MM = 1

2π i

∮
Bi

z̃ dz (5.22)

where {Bi} are the canonical dual cycles Ai ◦ Bj = δij . The integrability of (5.22) follows
from the symmetry of the period matrix of the curve (4.2).

Now, as in the one-matrix case, one should also introduce

res∞+ (dS2MM) = −res∞−(dS2MM) = t0 (5.23)

adding the bipole differential

d	± = ∂ dS2MM

∂t0
= d log

(
E(P,∞+)

E(P,∞−)

)
= zn−1z̃n−1 dz

Fz̃

−
∑

holomorphic

∂fij

∂t0
dvij (5.24)

where coefficients ∂fij

∂t0
are fixed, as in (5.11), by

∮
Ai

d	± = 0. The variables (5.16) should

be directly identified with those introduced in (3.7) for α = 1, . . . , n2 − 1 while Sn2 ≡
t0 − ∑n2−1

i Si .
The formulae (5.16), (5.22) and (5.23), together with the (regularized) equation

∂F
∂t0

=
∫ ∞+

∞−
dS2MM = 1

2π i

∫ ∞+

∞−
z̃ dz (5.25)

define the quasiclassical tau-function [16].
It is clear that this definition coincides in fact with the definition of free energy of NMM

or H2MM (3.7). Indeed, using formula (3.7) one can easily check that

∂F
∂tk

=
∫

zkρ(z, z̄) d2z = 1

2π i
res(zkz̃ dz) (5.26)

and

∂F
∂Sα

= vα. (5.27)

The quantities (5.27) are in fact nothing but linear combinations of (5.22) and (5.25), as
in the case of the 1MM. It can be derived by carefully treating the logarithmic integral
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zα

zβ

Figure 10. The integral in (5.29) can be transformed to (the linear combinations of) the integrals
over the cuts of logarithms, which turn into the B-periods of dS2MM = 1

2π i z̃ dz.

∫
dz ∧ dz̄ log |z − zα|, with zα belonging to one of the eigenvalue supports. Indeed from (3.8)

one can get for vα − V (zα, z̄α)∫
dz ∧ dz̄ log |z − zα|2 =

∑
spots

∫
dz ∧ dz̄ log(z − zα) + c.c.

=
∑

boundaries

∮
log(z − zα)z̄ dz + c.c. =

∑
boundaries

∮
log(z − zα)z̃ dz + c.c. (5.28)

The integral in the rhs of (5.29) is an integral of the multi-valued differential defined on a
Riemann surface with two sorts of cuts: the cuts of the function z̃(z) and the cuts of the
logarithms. The integral over the spots can be transformed into boundary integrals, where
the boundaries should now include the integrals along the branches of the logarithmic cuts
(see figure 10), the corresponding contributions to the two-dimensional integrals over spots
vanish. The latter are combined into the integrals around all spots which can be deformed
to infinity, modulo the integrals along the logarithmic cuts. Altogether these contributions
give rise to the canonical B-periods of dS2MM = 1

2π i z̃ dz. Finally, the situation appears to be
quite similar to 1MM since applying the procedure of ‘transfer’ of an eigenvalue from one
support to another [20] one should leave intact the boundary of the spot (since adding an
eigenvalue directly to the boundary not only changes the filling numbers, but also the shape
of the domain, related to the parameters of the potential [26]). Instead, as in the one-matrix
case (where one may neglect this problem due to vanishing of the density of eigenvalues at
the ‘boundaries’ of a cut) one should put the points zα to the branching points of the complex
curve where dz = 0. After that, using (5.29) and

∂V (z, z̄)

∂z

∣∣∣∣
dz=0

∝
∮

cut

z̃(z′) dz′

z − z′

one gets the formula (5.22).
Indeed, let us calculate, for example, the difference ∂F

∂Si
− ∂F

∂Sj
using the ‘eigenvalue

transfer’ procedure from an endpoint zβ = z′′ of the βth cut to an endpoint zv = z′ of the αth
cut in z-plane. It will be given by difference of the corresponding eigenvalue effective actions
(see (1.2), (1.4)) at the saddle point:
∂F
∂Si

− ∂F
∂Sj

= −z′z̄′ + z′′z̃′′ + W(z′) − W(z′′) + W̃ (z̃′) − W̃ (z̃′′)

+
N∑

m=1

′
log

(z′ − zm)(z̃′ − z̃m)

(z′′ − zm)(z̃′′ − z̃m)
(5.29)
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where z̃′ = z̃(z′), z̃′′ = z̃(z̃′′), with the function z̃(z) defined by the algebraic curve (4.2) (or
(4.5)) of the two-matrix model.

Passing to the continuum limit and introducing the resolvents G(z) and G̃(z̃), as in (3.2),
we rewrite the last term in (5.29) as follows∮

C

dz

2π i
G(z) log

(
(z′ − z)

z′′ − z)

)
+

∮
C̃

dz̃

2π i
G̃(z̃) log

(
(z̃′ − z̃)

(z̃′′ − z̃)

)
where the contours C and C̃ encircle all the eigenvalue supports—the cuts in the z and z̃

planes, respectively (these cuts or their stacks are depicted in figure 5). It is important that,
according to the definition of the sums in the last term of (5.29), the contours do not encircle
the logarithmic cuts along (z′, z′′) and (z̃′, z̃′′) intervals.

Blowing up the contours C, C̃ we will encircle only the logarithmic cuts (note that there
are no poles at infinity). Calculating discontinuity along these cuts we reduce the contour
integrals to the ordinary ones:

∂F
∂Si

− ∂F
∂Sj

= −z′z̃′ + z′′z̃′′ +
∫ x′

z′′
dz z̃(z) +

∫ z̃′

z̃′′
dz̃ z(z̃) (5.30)

the potentials being absorbed into the functions z̃(z) = W ′(z)+G(z) and z(z̃) = W̃ ′(z̃)+G̃(z̃),
according to the saddle point equations of the two-matrix model.

Integrating by parts in the last term of (5.30) (note that the last integral after the change
of variables goes along the unphysical sheets of the curve figure 4) we finally get the integral
over the dual Bij cycle

∂F
∂Si

− ∂F
∂Sj

=
∮

Bij

z̃ dz

2π i
(5.31)

which is equivalent to the equation (5.22) defining the geometry of the planar limit in
two-matrix model.

5.3. Explicit form of the two-support solution for the real cubic potential

In the rest of this section we will study in detail the degenerate case of a cubic potential with
real coefficients, having only two eigenvalue supports (on the real axis), instead of four. The
degeneration greatly simplifies the calculations. The period integrals can even be rewritten in
terms of elliptic integrals.

Indeed, the degenerate torus (4.14) can be presented as

Y 2 + P(X) = Y 2 − 1

g
(X − X1)

2(X − X2) = 0 (5.32)

and the new parameters X1 and X2 are defined by the discriminant equations

P(X) = − 1

g
X3 +

(
T

g
− 9

4g2

)
X2 +

(
q +

3T

g2
− 3f

g

)
X + h − 1

4

(
2T

g
− f

)2

= 0

(5.33)

P ′(X) = − 3

g
X2 +

(
2T

g
− 9

2g2

)
X +

(
q +

3T

g2
− 3f

g

)
= 0

where we used (4.14) and (4.8). This system of equations fixes, for example, h which is now
not independent and can be expressed through q and f .

Note that we have the expansions

X1 = − 1

g
+ δX1 = − 1

g
+ O(δf, δq)

X2 = − 1

4g
+ T + δX2 = − 1

4g
+ T + O(δf, δq)

(5.34)



Complex curve of the two-matrix model and its tau-function 3129

where

δf = f − 1

g2
δq = q +

T

g2
(5.35)

are deviations of moduli from their classical values in equation (2.4). The ‘classical’ value of
X1 in (5.34) precisely corresponds to the classical solution of (2.4), of course different from
the diagonal z = z̃.

Substituting z = z̃ into equation (4.6) one gets the fourth-order equation(
z2 +

3

g
z − T

g
+

f

2

)2

+ P(2z) =
(

z2 +
3

g
z − T

g
+

f

2

)2

+
1

g
(2z − X1)

2(2z − X2) = 0

(5.36)

corresponding to the four branch points of the two remaining cuts. These cuts can be interpreted
as ‘splitting’ the double zeros of the ‘classical limit’ of this equation given by (2.6). Let us
denote the splitting as ẑ1,2 → ẑ±

1,2, so that ẑ±
1 and ẑ±

2 are four solutions to (5.36). Then the
only non-degenerate A- and B-periods on the torus are given by the integrals of the differential
dS2MM = 1

2π i z̃ dz between these points

S = 1

2π i

∮ ẑ+
1

ẑ−
1

z̃ dz
∂F2MM

∂S
= � = 1

2π i

∮ ẑ−
2

ẑ+
1

z̃ dz = 1

π i

∫ ẑ−
2

ẑ+
1

z̃ dz (5.37)

where z̃ is related to z via(
zz̃ +

3

2g
(z + z̃) − T

g
+

f

2

)2

+
1

g
(z + z̃ − X1)

2(z + z̃ − X2) = 0.

These relations for the only nontrivial period S (5.37) on this degenerate gred = 1 curve should
be supplemented by the relations (5.23) and (5.25), defining the dependence on t0. As usual,
one may choose instead their linear combinations S1 = S and S2 = t0 − S, corresponding to
the filling numbers of the two cuts.

In this way we formulated the explicit solution of the two-support two-matrix model with
real cubic potential. We point here out again that the integrals (5.37) can be in principle
calculated in terms of elliptic functions.

6. Connection with SUSY gauge theories

Recently, it was proposed in [20] to build the geometries of underlying string theories for
certain N = 1 SUSY gauge theories by effectively reducing them to the complex curves (5.3)
of 1MM. The curves of the 1MM belong to the same class as the Seiberg–Witten curves [12]
of the SU(n)N = 2 SUSY gauge theories with n − 1 fundamental matter multiplets. The
attempts to understand this proposal directly from the field theory were considerably advanced
in [35], and later in [36]. Though the parallels between matrix models and four-dimensional
supersymmetric gauge theories based on the similarity of their integrable structures were
noted much earlier [13], the recent observation of [20] contains a direct conjecture relating the
superpotentials in N = 1 four-dimensional theories to the partition functions of the multi-cut
solutions, such as the ones considered in our paper.

According to the proposal of [20], the effective potentials of gaugino condensates
Si = 〈

Tr W(i)
α Wα

(i)

〉
in a large class of four-dimensional N = 1 gauge theories can be

calculated in terms of the planar limit of matrix integrals. For the N = 1 theory
with one adjoint matter multiplet (broken N = 2 supersymmetric theory) the calculation
reduces to the large-N solution of the one-matrix integral (5.1), in general having multiple
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cuts, as described in the previous section. When the U(N) gauge group is broken to
U(N1) × U(N2) × · · · × U(Nk), with the classical VEV of different subgroups located at
the different extrema of the tree superpotential, the matrix model predicts the values of k
gaugino condensates Si = 〈

Tr W(i)
α Wα

(i)

〉
corresponding to the vector multiplets W(i)

α of the
gauge subgroups. The effective potential Weff(Si, τ ) as a function of these condensates and
the complexified gauge coupling τ can be related to the free energy of the multi-cut solution

Weff(Si, τ ) =
∑

i

Ni

(
2π iτSi − ∂F(S1, . . . , Sk)

∂Si

)

the logarithmic term being hidden in the second term representing the derivative of the matrix
model free energy, according to the proposal of [20]. The variables S1, . . . , Sk appear, strictly
speaking, only in the planar limit of this matrix model and correspond to the eigenvalue filling
numbers Si = h̄Ni ∝ Ni/N of various classical extrema of the matrix action, giving rise to
the dependence of multi-support solutions upon the variables (5.6), (5.16) discussed in our
paper.

In the one-matrix case the situation looks to be relatively simple since the key observation
comes from the fact that from the coincidence of the matrix model and Seiberg–Witten curves
it trivially follows that

∂2F1MM

∂Si∂Sj

= ∂2FSW

∂ai∂aj

(6.1)

due to coincidence (after fixing the homology basis) of the period matrices. The Seiberg–
Witten prepotential FSW [12] as a function of a different set of variables

ai =
∮

Ai

λ

(
dW ′

n

y
− W ′

n

y

df

2f

)
(6.2)

is defined as

∂FSW

∂ai

=
∮

Bi

λ

(
dW ′

n

y
− W ′

n

y

df

2f

)
(6.3)

and it is also a quasiclassical tau-function [11]. Note that equation (6.1) states only that the
second derivatives of different functions in different variables coincide, but these functions
themselves are certainly different quasiclassical tau-functions. Such identification became
possible first of all since the number of multi-cut variables for the 1MM is n−1 = rank SU(n),
what is precisely the dimension of the moduli space of (the Coulomb phase of) the SU(n)

gauge theory.
For the softly broken N = 4 theory, according to the proposal of [20], F(S1, . . . , Sk) =

logZ should be calculated as the planar limit of the matrix integral

Z =
∫

D�1 D�2 D�3 eTr(i�1[�1,�2]+V (�1,�2,�3))

with �1,�2,�3 considered as simple Hermitian N × N matrices. Of course not all matrix
integrals of this kind are calculable. An important case corresponding to the N = 1∗

perturbation V (�1,�2,�3) = m
∑3

i=1 �2
i is considered in [20] and based on the planar

solution of this matrix model given in [37].
If only two out of three masses are nonzero and equal, the theory possesses N = 2

supersymmetry and its non-perturbative solution is formulated in terms of the elliptic
Calogero–Moser system [38, 39, 13], whose spectral curve [40] covers n times the elliptic
curve. There seems yet to be no naive and direct relations between the corresponding Seiberg–
Witten theory and the quasiclassical tau-function of the two-matrix model, considered in this
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paper. However, the structure of its complex curve suggests that certain geometric parallels
between these two theories are quite possible.

Let us discuss a possible place for the two matrix models in the context of the proposal
in [19]. An obvious and interesting generalization of the N = 1 SYM theory with one
adjoint chiral multiplet is the case of a few multiplets with direct interactions among the fields.
If one takes, in the case of two adjoint chiral multiplets X and Y , the tree superpotential
Wtree = −Tr XY + Tr W(X) + Tr W̃ (Y ) then the function F(S1, S2, . . .) in the general formula
(6.1) should be chosen as the planar free energy of the two-matrix model with (in general)
multiple supports, being calculated according to equations (5.16) and (5.22).

In this way we establish the relation between the algebraic curve of the two-matrix model
and geometry of the supersymmetric theory with the described class of tree potentials.

The two-matrix model obeys a rich phase structure in the space of its couplings. Its
critical points correspond to collisions of various singularities on the algebraic curve, like
the collapse of the B-period of the Seiberg–Witten curve corresponding to the appearence of
massless monopoles. These critical points were used for the complete classification (within
the H2MM) of the models of (p, q) rational matter field interacting with 2D gravity (see
for example [6]). It would be interesting to study the consequences of this well established
picture for the phase structure of the underlying N = 1 SYM theory with two adjoint chiral
multiplets.

Let us note here that an interesting generalization of the standard H2MM considered in
this paper is the model describing the perturbed quantum mechanics of the inverted oscillator,
proposed in [41]. This model corresponds to the potential V (z, z̃) = −(z̃z)R +

∑
k tkz

k +∑
k t̃k z̃

k and is related to the dynamics of windings in the compactified 2D string theory. For
rational R this model also can be described by an algebraic curve.

In contrast to the one-matrix model, in the two-matrix model the number of multicut
parameters (4.3) grows exactly as the dimension of the SU(n) group n2 − 1 = dim SU(n).
Naively, this would correspond to the total breaking of the SU(n) gauge group, including even
the breaking of the corresponding global symmetry, or to a theory with a more complicated
gauge/matter structure.

However, an important particular case of the multicut solution of the two-matrix model
corresponding to the case of real couplings in the potential and only n − 1 real eigenvalue
supports, giving the curve with genus (4.20). In this case we have the number of extra
parameters exactly equal to the genus gred = n − 1 = rank SU(n), which might be
more appropriate for the study of the symmetry breaking in the corresponding N = 1
supersymmetric Yang–Mills theory.

7. Possible generalizations

A large class of solvable matrix models15 can be classified by ‘tree diagrams’, where each
edge of the tree connects two matrices sitting at the vertices. The corresponding matrix model
potential can be written as

V (�) = Tr


−

Q∑
i>j=1

Cij�i�j +
∑

i

Wi(�i)


 (7.1)

where Cij = 1, if i, j are the neighbouring vertices of the tree, and Cij = 0 otherwise. A
particular kind of such a solvable model with tree-like interaction, the Potts model on planar
graphs, was first considered in [42].
15 Where by ‘solvability’ we mean a possibility of reducing the number of degrees of freedom from the order of N2

to the order of N, by integrating over the angular variables of the matrices.
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It is easy to integrate out the ‘angular’ parts of Hermitian matrices �i, i = 1, . . . ,Q,
since they are independent in the case of a tree interaction, taking the corresponding HCIZ
integrals and to rewrite the partition function of the model in terms of their eigenvalues
�i = diag

(
z
(i)
1 , . . . , z

(i)
N

)
(see, for example, [43])

Z =
∫ N∏

k=1

(∏
i

(
dz

(i)

k eWi(z
(i)
k )

)
e−∑

i,j Cij z
(i)
k z

(j )

k

)
Q∏

i=1

[�(z(i))]2−mi (7.2)

where mi = ∑Q

j=1 Cij is the coordination number of the ith vertex.
Introducing the resolvents of matrices Gi(z) (having, as usual, the asymptotic Gi(z) →

t0/z at z → ∞) we can write the following saddle-point equations, generalizing the
equations (3.3) of the H2MM:

Q∑
j=1

Cijz
(j) − W ′

i (z
(i)) = (mi − 2)Gi(z

(i)). (7.3)

As in the case of the two-matrix model, this system of equations should be degenerate, and
this degeneracy is the condition of its solution in terms of an algebraic hyper-surface relating
all Q variables16. Namely, it should exist as a polynomial function of F depending on all
z(i), i = 1, . . . ,Q, such that

F(z(1), . . . , z(Q)) = 0 (7.4)

in analogy with (4.1). If the system (7.3) was not degenerate it would give only pointlike
distributions, leading to the collapse of eigenvalues into one or a few points. Such a collapse
might also be a possible situation, known for example from the analysis of the q-state Potts
models of [42] for q > 4.

To build the function (7.4), and to analyse the structure of the corresponding algebraic
surface we should start as usual, from the ‘classical’ equations (cf with (2.2)) corresponding
to putting all the rhs of (7.3) to zero. The ‘classical’ limit of the function (7.4) corresponds to
the product of all these ‘classical’ equations (in analogy with (2.4) for the two-matrix model).
Then one can write

F(z(1), . . . , z(Q)) =
Q∏

i=1


 Q∑

j=1

Cij z
(j) − W ′

i (z
(i))


 + deformations

where by the deformations we mean adding a polynomial in all variables of lower degree,
governed by the corresponding multidimensional Newton polyhedron. The coefficients in front
of the monomials of higher degrees are determined by the asymptotic at infinities following
from (7.3) and coincide with their values in the classical part. The rest of the deformation
coefficients will provide the new moduli of the complex structure of this algebraic manifold.

The algebraic equation (7.4) has the degree deg = ∏Q

i=1(Ki − 1), where Ki is the highest
power of the potential Wi(z). This corresponds to the number of extrema in the classical
multi-matrix potential and to the number of moduli parameters of the curve contained in the
deformation.

The fact that this algebraic surface is in general not a curve does not contradict the
existence of the resolvents Gi(z). It might be related to the existence of higher-dimensional
holomorphic differential forms, such as the well-known 3-form d	3 on Calabi–Yau 3-folds.
On particular 3-cycles, after the integration over two variables it turns into a meromorphic

16 An important particular case of such a surface will be considered in [44].



Complex curve of the two-matrix model and its tau-function 3133

one-differential. This differential is related to the resolvent with respect to the third
variable [45].

Of course, it is only a sketch of the construction of the algebraic surface of the treelike
multi-matrix model. It would be interesting to precise the details and the structure of this
algebraic surface, although it might be difficult to do it to the same extent of explicitness as
we have done in this paper for the two-matrix model.

Some further generalizations are possible if we substitute the potential (7.1) by

V (�) = Tr


−

Q∑
i>j=1

Cij (�i�j) +
∑

i

Wi(�i)


 (7.5)

where Cij (M) are arbitrary polynomial functions (nonzero only on a tree). In this case we
can achieve the reduction to the eigenvalues by the method of character expansion (see [43],
and references therein). Namely, we can expand the exponent of each interaction term into
the GL(N) characters χR(M)

e−Cij Tr(�i�j ) =
∑
R

f
(i,j)

R χR(�i�j)

and then use the orthogonality property of the matrix elements to integrate out the relative
angle of two matrices. An example of such a calculation was done in [46] for the Tr(�i�j )

2

interaction. The corresponding system of polynomial equations will include, along with the
eigenvalue variables, the dual variables corresponding to the highest weights of the Young
tableaux of the SL(N) irreducible representations. Here the construction of the algebraic
surface looks even more difficult, but certainly not impossible. Note that the model still
stays ‘solvable’ by the character expansion method if we change the arguments of products
Cij (�i�j ) by Cij

(
�

kij

i �
nij

j

)
with arbitrary integers kij , nij for each ij -link.

These models (and those which can be reduced to them by introducing some Gaussian
matrix integrations, as in the case of the Potts model on planar graphs [42]) exhaust the list of
‘solvable’ (i.e., reducible to the eigenvalues) multi-matrix models.

8. Conclusion

In this paper we studied the multi-support solutions of two-matrix models and found that
they lead to the appearance of a new nontrivial one-dimensional complex geometry. The
corresponding quasiclassical tau-function can still be defined in a standard way and even
rather explicit formulae defining the tau-function can be written down.

The main problem for the multi-support solutions is nevertheless to write explicitly the
system of integrable equations which is solved by the corresponding free energy. For the
one-support solutions such a system necessarily includes the dispersionless Hirota equations
which have a nice and well-known dispersionful analogue.

The only known analogues of the dispersionless Hirota equations for the multi-support
case are the associativity or WDVV equations [47], and a wide class of their solutions is
constructed on the base of quasiclassical tau-functions. Formula (4.11) in particular suggests
that the quasiclassical partition function of the cubic two-matrix model in the ‘symmetric
ansatz’, say with t0 = 0, satisfies the WDVV equations [47, 48]. This follows from simple
counting of the number of variables (six coefficients of the potential and three filling numbers
altogether give the same number of free parameters as the number of critical points (4.11)
for n = 2) and the structure of the residue formula for this case. We mention this fact
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since it seems to be the only explicitly known solution to WDVV equations coming from the
nonhyperelliptic curves (see [49] for a general description of this issue).

In this paper, we presented a two-support solution of the two-matrix model for the cubic
potential in a rather explicit form. Nevertheless, in principle it can be given more precisely. In
particular, the period integrals (5.37) are elliptic (according to the structure of the underlying
curve having the genus gred = 1) and can be in principle calculated explicitly. It might be
instructive to do so and to write explicitly their asymptotic expansion.

The multi-solutions we found are quite interesting from the point of view of statistical–
mechanical models on planar graphs. An example of such a model (a double-phase Ising
model) is described in section 2. It would be interesting to classify all such possible models
emerging from the multi-support two-matrix model.

From the point of view of the underlying N = 1 supersymmetric Yang–Mills theory
it is very desirable to study the degenerations of a higher genus (with more than two cuts
filled) algebraic curve of the two-matrix model considered above and classify the emerging
physical excitations (monopoles, dyons, etc), by analogy to the hyperelliptic solution in the
(generalized) Seiberg–Witten picture.

Finally, the models described in section 7 should contain a much richer variety of possible
algebraic surfaces describing their planar limit. They certainly deserve considerable attention.
The matrix models, due to their natural integrability properties, could give an insight into the
structure of algebraic surfaces possessing interesting physical applications.
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